An Improved Preliminary Test Estimator for the Variance of a Normal Distribution

Gayatri Tiwari and K.P. Saxena Vikram University, Ujjain (Received : July, 1990)

Summary

A preliminary test estimator (PTE) for the variance of a normal population has been proposed when a prior information about the variance is available. Empirical results of bias and relative efficiency reveal that the proposed estimator is better than the similar estimator constructed by Srivastava [2].

Key Words: Minimum Mean Square Error Estimator. Preliminary Test Estimator, Relative Bias, Relative Efficiency.

Introduction

Let x_1, x_2, \ldots, x_n be a random, sample drawn from a normal population $N(\mu, \sigma^2)$, where μ and σ^2 both are not known. It is desired to estimate σ^2 . Goodman [1] showed that the minimum mean square error estimator among the class of estimators of the form Cs^2 is $T = (n-1)s^2/(n+1)$, where s^2 is the usual unbiased estimator of σ^2 .

Let σ_0^2 be available as a prior information on σ^2 besides the sample information in the form of T. These informations are used in the construction of the estimator $\hat{\sigma}^2$ proposed here. This estimator is obtained as a consequence of the preliminary test of the hypothesis $\sigma^2 = \sigma_0^2$ and is called Preliminary test estimator (PTE). It is defined as follows:

$$\hat{\sigma}^2 = \left\{ \begin{array}{ll} \sigma_0^2 \ \ \text{if} \ \ H_0 \ : \ \ \sigma^2 = \sigma_0^2 \quad \text{is accepted,} \\ T \ \ \text{otherwise.} \end{array} \right.$$

The expressions of bias and mean square error of σ^2 are derived. Srivastava [2] has proposed a similar PTE of σ^2 as defined by

$$\hat{\sigma}_{PT}^2 \ = \ \left\{ \begin{array}{l} \sigma_0^2 \ \ \text{if} \ \ H_0 \ : \ \sigma^2 \ = \ \sigma_0^2 \ \ \text{is accepted,} \\ s^2 \ \ \text{otherwise.} \end{array} \right.$$

We have investigated gain in the relative efficiency of $\hat{\sigma}^2$ over

Bias and mean square error of σ^2

We know that ms^2/σ^2 is distributed as χ^2 with m = (n-1) degrees of freedom. Hence the hypothesis $H_0: \sigma^2 = \sigma_0^2$ is tested using the statistic $w = ms^2/\sigma_0^2$ which has the density given by

$$f(w, k) = \frac{k^{m/2}}{2^{m/2} \lceil (m/2) \rceil} e^{-kw/2} w^{(m/2)-1} . \quad (k = \sigma_0^2/\sigma^2, k > 0)$$
 (2.1)

If we denote by χ^2 (m, α) the upper 100 α % point of Chi-square distribution with m degree of freedom, then the estimator $\hat{\sigma}^2$ may be written as

$$\hat{\sigma}^{2} = \begin{cases}
\sigma_{0}^{2} & \text{if } w \leq X^{2} \text{ (m, } \alpha), \\
T & \text{otherwise.}
\end{cases}$$
(2.2)

The expected value of σ^2 is given by

$$\begin{split} E\left(\hat{\sigma}^{2}\right) &= E\left[\begin{array}{ccc} \sigma_{0}^{2} \mid w \leq \chi^{2}\left(m,\,\alpha\right)\right] P\left[w \leq \chi^{2}\left(m,\,\alpha\right)\right] \\ &+ E\left[\begin{array}{ccc} T \mid w \geq \chi^{2}\left(m,\,\alpha\right)\right] P\left[w \geq \chi^{2}\left(m,\,\alpha\right)\right] \\ &= \frac{\sigma_{0}^{2} \ k^{m/2}}{2^{m/2\left\lceil\left(m/2\right)\right|}} \left[\begin{array}{ccc} \chi^{2}\left(m,\,\alpha\right) \\ \int & e^{-k\,w/2} \,w^{\left(m/2\right)-1} \ dw \end{array}\right] \\ &+ \frac{1}{n+1} \int_{\chi^{2}\left(m,\,\alpha\right)}^{\infty} e^{-kw/2} \,w^{m/2} \ dw \end{split} \tag{2.4}$$

(2.4)

On evaluating the integrals in (2.4) and simplifying we get

$$E(\hat{\sigma}^2) = \sigma_0^2 I(C, m/2) + \frac{m\sigma_0^2}{k(n+1)} \left\{ 1 - I(C, \frac{m}{2} + 1) \right\},$$
 (2.5)

where
$$C = \frac{1}{2} k\chi^2(m, \alpha)$$
 and $I(y, n) = \int_0^y e^{-x} x^{n-1} \frac{dx}{n}$

Therefore

$$\frac{\mathrm{E}\left(\hat{\sigma}^{2}\right)}{\sigma^{2}} = \mathrm{k}\,\mathrm{I}\left(\mathrm{C},\frac{\mathrm{m}}{2}\right) + \frac{\mathrm{m}}{(\mathrm{n}+1)}\,\left\{1 - \mathrm{I}\left(\mathrm{C},\frac{\mathrm{m}}{2} + 1\right)\right\}. \tag{2.6}$$

The relative bias (Bias/ σ^2) can be easily obtained from (2.6) and is given by

Relative Bias =
$$k I \left(C, \frac{m}{2}\right) - \frac{m}{(n+1)} I \left(C, \frac{m}{2} + 1\right) - \frac{2}{(n+1)}$$
 (2.7)

The mean square error (MSE) of $\mathring{\sigma}^2$ is defined as

$$MSE \left(\stackrel{\wedge}{\sigma}^2 \right) = E[\left(\stackrel{\wedge}{\sigma}^2 \right)]^2 - 2\sigma^2 E(\stackrel{\wedge}{\sigma}^2) + \sigma^4, \tag{2.8}$$

where

$$E (\mathring{\sigma}^2)^2 = E [σ_0^4 | w ≤ χ^2 (m, α)] P [w ≤ χ^2 (m, α)]$$

+ $E | T^2 | w ≥ χ^2 (m, α)] P [w ≥ χ^2 (m, α)](2.9)$

and E ($\hat{\sigma}^2$) is given by (2.5). It is easy to evaluate (2.9) on substituting the values of E($\hat{\sigma}^2$)² and E($\hat{\sigma}^2$) in (2.8) we obtain

$$\frac{\text{MSE } (\stackrel{\triangle}{\sigma}^2)}{\sigma^4} = \frac{2}{(n+1)} + k (k-2) I \left(C, \frac{m}{2} \right) + \frac{2m}{(n+1)} I \left(C, \frac{m}{2} + 1 \right) - \frac{m}{(n+1)} I \left(C, \frac{m}{2} + 2 \right). \tag{2.10}$$

3. Relative efficiency of σ^2

It is known that the variance of the unbiased estimator s^2 is $2\sigma^4/m$. Hence the relative efficiency of σ^2 with respect to s^2 will be given by the ratio,

RE
$$(\hat{\sigma}^2) = \frac{V(s^2)}{MSE} (\hat{\sigma}^2)$$

$$= \left[\frac{m}{(n+1)} + \frac{m k(k-2)}{2} I \left(C, \frac{m}{2} \right) + \frac{m^2}{(n+1)} I \left(C, \frac{m}{2} + 1 \right) - \frac{m^2}{2 (n+1)} I \left(C, \frac{m}{2} + 2 \right) \right]^{-1}$$
(3.1)

which is less than 1 for $k \ge 2$.

Table 1. Relative Bias : Bias / σ^2

n	k	0.4	` 0.6	0.8	1.0	1.2	1.6
5		-0.304 -0.286	-0.228 -0.202	-0.106 -0.081	0.049 0.070	0.224 0.240	0.606 0.612
7		-0.250 -0.232	-0.205 -0.176	-0.102 -0.074	0.045 0.067	0.220 0.234	0.602 0.608
9		-0.212 -0.194	-0.188 -0.157	-0.100 -0.070	0.042 0.063	0.216 0.229	0.602 0.605

Table 2. Relative Efficiency of σ^2 with Respect to s^2

n.	k	0.4	0.6	0.8	1.0	1.2	1.6
5		1.771 1.896	2.623 2.826	4.988 5.048	9.154 7.822	6.306 5.345	1.334 1.292
7		1.383 1.500	1.894 2.057	3.607 3.648	7.324 6.016	4.820 4.039	0.906 0.886
9 ·		1.254 1.315	1.540 1.711	2.925 2.971	6.497 5.208	4.012 3.374	0.686 0.676

Table 3: Gain in Relative Efficiency

n	k	0.4	0.6	0.8	1.0	1.2	1.6
5		0.849 0.908	1.519 1.712	3.404 3.629	6.748 5.989	3.498 3.373	0.110 . 0.210
7		0.513 0.550	0.881 0.999	2.070 2.240	4.684 4.0.44	1.935 1.956	0.036 0.136
9		0.345 0.389	0.598 0.703	1.439 1.546	3.701 3.126	1.220 1.299	0.008 0.012

4. Discussion of the numerical results

We have calculated values of the relative bias and relative efficiency RE ($^{\circ}$ 2) for n = 5,7,9, level of significance α = .05, 0.10 and k=0.4, 0.6, 0.8, 1.0, 1.2 and 1.6. These results are assembled in Table 1 and 2. Results of the gain in relative efficiency [RE ($^{\circ}$ 2) -RE ($^{\circ}$ 2)] are assembled in Table 3. In these tables the values in the first row correspond to the level of significance α = .05 and those in the second row refer to α = .10.

From Table 1, we observe that the relative bias of the proposed estimator increases as we increase the level of significance α . The estimator is positively biased for $k \ge 1$ and negatively biased for k < 1.

From Table 2, we observe that the proposed estimator σ^2 is more efficient than the unbiased estimator s^2 for all values of k lying between 0.4 to 1.2. We also observe that the relative efficiency increases with k and reaches its maximum at k=1 and then decreases.

We have compared the relative efficiency of the estimator σ^2 defined by (2.2) with the relative efficiency of a similar estimator σ^2_{PT} proposed by Srivastava [2]. From Table 3 it is observed that the gain increases as k increases and reaches its maximum at k=1. For k>1 gain decreases rapidly. The values of relative bias of σ^2 shown in Table 1 can be easily compared with the relative bias of σ^2_{PT} obtained by Srivastava [2]. It is found that σ^2 is always less biased. Therefore, the estimator σ^2 is not only less biased but more efficient than σ^2_{PT} .

ACKNOWLEDGEMENT

The authors express their thanks to the referee for his helpful comments:

REFERENCES

- Goodman L.A., 1953. A Simple method for improving some estimators. AMS 24, 114-117.
- [2] Srivastava, S.R., 1976. A Preliminary test estimator for the variance of a normal distribution. JISA 14, 107-111.